Appendix 1
Crystal Structure Descriptions

In this appendix, most of the crystal structure types introduced in the main text are formally described by means of their chemical formulas, StrukturBericht symbols, space groups, lattice parameters, special atom positions, etc. In addition, examples of actual compounds with these structures are given, along with their lattice parameters. All lattice parameters are stated in nm.

Structure types are listed in the order in which they appear in the text, and are sequentially numbered. Most of the structural data in this appendix was extracted from the following sources:

When consulting the tables on the following pages, one must be aware of the fact that many compounds can have multiple crystal structures; it is always a good idea to consult the original sources listed above (and others) to verify that the correct structure is obtained. In particular, the examples of structures of a given structure type will often include metastable structures, or high temperature/high pressure phases; we refer the reader to the original sources for those details. Furthermore, atom coordinates provided in this appendix have been used with the sole purpose of creating structure visualizations; this means that sites with partial occupancy will show up in a structure drawing as fully occupied sites. The reader who wishes to compute x-ray powder patterns for any of these structures should consult the original citations to make sure that all site occupancies are properly accounted for.

The compound names for intermetallics are listed in the same convention as in Pearson’s lists, namely an alphabetical ranking of all the elements in the compound, except for the prototype chemical formulas, for which we follow the list by J. Lima de Faria.
(J. Lima de Faria, *Structural Classification and Notation*, Chapter 1 in *Intermetallic Compounds, Vol. 3*, edited by J.H. Westbrook and R.L. Fleischer, John Wiley and Sons, New York (2002)). For instance, BiF$_3$ is the prototype for the D0$_3$ structure, which has Mg$_3$Pr and AlFe$_3$ as example compounds; note that the elements are listed alphabetically, so that the AB_3 compound is sometimes written as B_3A. The only exception will be when the conventional prototype name is not in alphabetical order, for instance ZnS, in which case we do not change the order to SZn.

The present version of this structures appendix was completed on October 1, 2009; updates containing corrections will be posted as needed.
Table A1.0. Alphabetical list of all prototype structures described in this appendix, along with the page number on which the complete description can be found. Note that for compounds, constituent elements are ranked alphabetically. If you know the structure number, then the page number is obtained simply by adding 3.

<table>
<thead>
<tr>
<th>Prototype</th>
<th>Page</th>
<th>Prototype</th>
<th>Page</th>
<th>Prototype</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgBa₂Ca₃Cu₄O₁₀</td>
<td>A1–87</td>
<td>Ca₂Mg₅(Si₄O₂₂)(OH)₃</td>
<td>A1–98</td>
<td>NaAlSi₂O₆</td>
<td>A1–96</td>
</tr>
<tr>
<td>Al₂SiO₅ (Kyanite)</td>
<td>A1–92</td>
<td>CaCl</td>
<td>A1–13</td>
<td>NiAs</td>
<td>A1–18</td>
</tr>
<tr>
<td>Al₂Si₂O₇(OH)₄</td>
<td>A1–99</td>
<td>Co₂Cr₂Mo₂</td>
<td>A1–43</td>
<td>Ni₁₇Th₂</td>
<td>A1–51</td>
</tr>
<tr>
<td>Al₂Zr₄</td>
<td>A1–33</td>
<td>Cr₃Si</td>
<td>A1–32</td>
<td>α-SiO₂</td>
<td>A1–100</td>
</tr>
<tr>
<td>As</td>
<td>A1–23</td>
<td>CuFeS₂</td>
<td>A1–16</td>
<td>β-SiO₂</td>
<td>A1–101</td>
</tr>
<tr>
<td>AuCu</td>
<td>A1–7</td>
<td>Cu₂Mg</td>
<td>A1–35</td>
<td>Sm₂Fe₁₇N₃</td>
<td>A1–56</td>
</tr>
<tr>
<td>AuCu₃</td>
<td>A1–8</td>
<td>Fe₂B</td>
<td>A1–59</td>
<td>Sm(Fe,Ti)₁₂N</td>
<td>A1–57</td>
</tr>
<tr>
<td>Ba₁₋₂K₂BiO₃</td>
<td>A1–71</td>
<td>Fe₅Zr₆</td>
<td>A1–60</td>
<td>Th₂Zn₁₇</td>
<td>A1–52</td>
</tr>
<tr>
<td>Ba₃Pb₁₋₂Bi₂O₃</td>
<td>A1–70</td>
<td>α-Ga</td>
<td>A1–27</td>
<td>Ti₂CS</td>
<td>A1–69</td>
</tr>
<tr>
<td>(Ba,Sr)CuO₄</td>
<td>A1–88</td>
<td>α-Hg</td>
<td>A1–26</td>
<td>TiO₂</td>
<td>A1–65</td>
</tr>
<tr>
<td>Be₂Al₂S₆O₁₈</td>
<td>A1–97</td>
<td>H₂O(Ic)</td>
<td>A1–106</td>
<td>TiBa₂CaCu₂O₇</td>
<td>A1–84</td>
</tr>
<tr>
<td>Be₃Nb</td>
<td>A1–49</td>
<td>In</td>
<td>A1–22</td>
<td>TiBa₂Ca₂Cu₃O₈</td>
<td>A1–85</td>
</tr>
<tr>
<td>BiF₃</td>
<td>A1–11</td>
<td>α-La</td>
<td>A1–20</td>
<td>TiBa₂Ca₃Cu₄O₁₁</td>
<td>A1–86</td>
</tr>
<tr>
<td>Bi₂Sr₂CuO₆₊ₓ</td>
<td>A1–75</td>
<td>La₂CuO₄</td>
<td>A1–72</td>
<td>Ti₂Ba₂Cu₂O₆₊ₓ</td>
<td>A1–79</td>
</tr>
<tr>
<td>Bi₂Sr₂Ca₂Cu₂O₈₊ₓ</td>
<td>A1–76</td>
<td>Mg</td>
<td>A1–6</td>
<td>Ti₂Ba₂CaCu₂O₆₊ₓ</td>
<td>A1–80</td>
</tr>
<tr>
<td>Bi₂Sr₂Ca₂Cu₃O₁₀₊ₓ</td>
<td>A1–77</td>
<td>MgAl₂O₄</td>
<td>A1–63</td>
<td>Ti₂Ba₂Ca₂Cu₃O₁₀₊ₓ</td>
<td>A1–81</td>
</tr>
<tr>
<td>Bi₂Sr₂Ca₂Cu₄O₁₂₊ₓ</td>
<td>A1–78</td>
<td>Mg₁₂₂(Al,Zn)₄₉</td>
<td>A1–81</td>
<td>Ti₂Ba₂Ca₃Cu₄O₁₂₊ₓ</td>
<td>A1–82</td>
</tr>
<tr>
<td>Ca₂(Al,Fe)Al₂Si₃O₁₃H</td>
<td>A1–94</td>
<td>MgZn₂</td>
<td>A1–36</td>
<td>W₁₇Fe₇</td>
<td>A1–40</td>
</tr>
<tr>
<td>Ca₂Al₂Si₃O₁₂₋₄H₂O</td>
<td>A1–103</td>
<td>Mn₁₂Th</td>
<td>A1–53</td>
<td>YBa₂Cu₃O₇₋ₓ</td>
<td>A1–74</td>
</tr>
<tr>
<td>Ca₂Cu₅</td>
<td>A1–50</td>
<td>Mn₂₁Th₆</td>
<td>A1–47</td>
<td>Zn(S/zinc-blende)</td>
<td>A1–14</td>
</tr>
<tr>
<td>ZrSiO₄</td>
<td>A1–91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crystal Structure Descriptions

A1–3
Structure 1
Prototype: Cu
SBS/PS: A1/cF4
SG # 225: Fm3m (O_h^{3})
Lattice complex: Cu @ 4a(0, 0, 0)

<table>
<thead>
<tr>
<th>Element</th>
<th>a</th>
<th>Element</th>
<th>a</th>
<th>Element</th>
<th>a</th>
<th>Element</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.3615</td>
<td>Ag</td>
<td>0.4086</td>
<td>Au</td>
<td>0.4078</td>
<td>Al</td>
<td>0.4049</td>
</tr>
<tr>
<td>Ni</td>
<td>0.3524</td>
<td>Pd</td>
<td>0.3891</td>
<td>Pt</td>
<td>0.3924</td>
<td>Pb</td>
<td>0.4950</td>
</tr>
</tbody>
</table>

Table A1.1. Representative elements for Structure 1. Pearson’s tables list 485 intermetallic compounds (mostly solid solutions) with this structure type.
Crystal Structure Descriptions

Structure 2
Prototype: W
SBS/PS: A2/c12
SG # 229: Im¯3m (O₆h)
Lattice complex: W @ 2a(0, 0, 0)

<table>
<thead>
<tr>
<th>Element</th>
<th>a</th>
<th>Element</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>3.1650</td>
<td>Fe</td>
<td>2.8664</td>
</tr>
<tr>
<td>Mo</td>
<td>3.1469</td>
<td>Ta</td>
<td>3.3026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ba</td>
<td>5.0190</td>
</tr>
</tbody>
</table>

Table A1.2. Representative elements for Structure 2. Pearson’s tables list 333 intermetallic compounds (mostly solid solutions) with this structure type.
Structure 3
Prototype: Mg
SBS/PS: A3/hP2
SG # 194: P6₃/mmc (D₁₆h)
Lattice complex: Mg @ 2d(\(\frac{2}{3}, \frac{1}{3}, \frac{1}{4}\))

Table A1.3. Representative elements for Structure 3. Pearson’s tables list 120 intermetallic compounds (mostly solid solutions) with this structure type.
Structure 4
Prototype: AuCu
SB/PS: L1₀/tP4 (or tP4 with centered cell)
SG # 123: P4/mmm (D₄h)
Lattice complex: Au @ 2c(0, 1/2, 1/2); Cu @ 1a(0, 0, 0) and 1c(1/2, 1/2, 0)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>(\frac{c}{a})</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>(\frac{c}{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuCu</td>
<td>0.3963</td>
<td>0.3671</td>
<td>0.926</td>
<td>AgTi</td>
<td>0.4104</td>
<td>0.4077</td>
<td>0.993</td>
</tr>
<tr>
<td>AlTi</td>
<td>0.3984</td>
<td>0.4065</td>
<td>1.020</td>
<td>CoPt</td>
<td>0.3806</td>
<td>0.3684</td>
<td>0.968</td>
</tr>
<tr>
<td>CrPd</td>
<td>0.3879</td>
<td>0.3802</td>
<td>0.980</td>
<td>FePd</td>
<td>0.3852</td>
<td>0.3723</td>
<td>0.966</td>
</tr>
<tr>
<td>MnNi</td>
<td>0.3690</td>
<td>0.3490</td>
<td>0.945</td>
<td>PtZn</td>
<td>0.4026</td>
<td>0.3474</td>
<td>0.863</td>
</tr>
</tbody>
</table>

Table A1.4. Representative compounds for Structure 4. Pearson’s tables list 97 intermetallic compounds with this structure type.
Structure 5
Prototype: AuCu₃
SBS/PS: L₁₂/cP₄
SG # 221: Pm₃m \((O_{h}^1) \)
Lattice complex: Au @ 1a(0, 0, 0); Cu @ 3c\((0, \frac{1}{2}, \frac{1}{2}); \frac{1}{2}\)

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuCu₃</td>
<td>0.3749</td>
<td>AgPt₃</td>
<td>0.3900</td>
<td>AlNi₃</td>
<td>0.3572</td>
<td>TiZn₃</td>
<td>0.3932</td>
</tr>
<tr>
<td>AlPt₃</td>
<td>0.3876</td>
<td>Al₃Er</td>
<td>0.4215</td>
<td>Al₃U</td>
<td>0.4287</td>
<td>Pd₃Y</td>
<td>0.4074</td>
</tr>
</tbody>
</table>

Table A1.5. Representative compounds for Structure 5. Pearson’s tables list 436 intermetallic compounds with this structure type.
Structure 6
Prototype: C (diamond)

\[SBS/PS: \text{A4/cF8} \quad \text{SG \# 227: Fd\overline{3}m (O_h^7)} \]

Lattice complex: C @ 8a(0,0,0)

<table>
<thead>
<tr>
<th>Element</th>
<th>(a)</th>
<th>Element</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.356</td>
<td>Si</td>
<td>0.5431</td>
</tr>
<tr>
<td>Ge</td>
<td>0.5657</td>
<td>(\alpha)-Sn</td>
<td>0.6491</td>
</tr>
</tbody>
</table>

Table A1.6. Representative elements for Structure 6. Pearson’s tables list 16 intermetallic compounds with this structure type.
Structure 7
Prototype: NaCl (rock salt)

SG # 225: *Fm\overline{3}m* (*O_\text{h}^3*)

Table A1.7.
Representative compounds for Structure 7. Pearson’s tables list 799 intermetallic compounds with this structure type.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0.5640</td>
<td>MgO</td>
<td>0.4213</td>
<td>FeO</td>
<td>0.4307</td>
</tr>
<tr>
<td>MgS</td>
<td>0.5200</td>
<td>BaSe</td>
<td>0.6600</td>
<td>CaTe</td>
<td>0.6356</td>
</tr>
<tr>
<td>LiF</td>
<td>0.4027</td>
<td>BrNa</td>
<td>0.5977</td>
<td>TiN</td>
<td>0.4240</td>
</tr>
</tbody>
</table>
Structure 8 Prototype: BiF₃
SBS/PS: D₀₃/cF16 SG # 225: Fm3m (O₃³)
Lattice complex: Bi @ 4a(0, 0, 0); F @ 4b (½, ½, ½) and 8c (1/4, 1/4, 1/4)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiF₃</td>
<td>0.5865</td>
<td>BiLi₃</td>
<td>0.6722</td>
<td>Cd₃Pr</td>
<td>0.7200</td>
</tr>
<tr>
<td>CeMg₃Pr</td>
<td>0.7438</td>
<td>Cu₃Sb</td>
<td>0.6010</td>
<td>Fe₃Si</td>
<td>0.5662</td>
</tr>
<tr>
<td>Mg₃Pr</td>
<td>0.7430</td>
<td>AlFe₃</td>
<td>0.5780</td>
<td>Mn₃Si</td>
<td>0.5722</td>
</tr>
</tbody>
</table>

Table A1.8. Representative compounds for Structure 8. Pearson’s tables consider both D₀₃ and L2₁ structure types under the BiF₃ prototype, and list 394 intermetallic compounds with this structure type.
Crystal Structure Descriptions

Structure 9
Prototype: AlCu$_2$Mn (Heusler)

*SBS/PS: L2$_1$/cF16 SG # 225: Fm$\bar{3}$m (O_h^5)

Lattice complex: Cu @ 8c($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$); Al @ 4a(0, 0, 0); Mn @ 4b($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCu$_2$Mn</td>
<td>0.5949</td>
<td>Cu$_2$MnSb</td>
<td>0.6097</td>
<td>Cu$_2$FeSn</td>
<td>0.5930</td>
</tr>
<tr>
<td>AlCu$_2$Hf</td>
<td>0.6172</td>
<td>AlNi$_2$Ti</td>
<td>0.5850</td>
<td>GaMnNi$_2$</td>
<td>0.xxxx</td>
</tr>
<tr>
<td>Co$_2$MnSn</td>
<td>0.5989</td>
<td>AlCo$_2$Nb</td>
<td>0.5946</td>
<td>AlCo$_2$Ta</td>
<td>0.5927</td>
</tr>
</tbody>
</table>

Table A1.9. Representative compounds for Structure 9. Pearson’s tables consider both D0$_3$ and L2$_1$ structure types under the BiF$_3$ prototype, and list 394 intermetallic compounds with this structure type.
Structure 10
Prototype: CsCl

SBS/PS: B2/cP2

SG # 221: Pm3m (O_{h}^{4})

Lattice complex: Cs @ 1a(0, 0, 0); Cl @ 1b(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
<th>Compound</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsCl</td>
<td>0.4123</td>
<td>BrCs</td>
<td>0.4286</td>
<td>AlCo</td>
<td>0.2862</td>
<td>AgMg</td>
<td>0.3280</td>
</tr>
<tr>
<td>CoTi</td>
<td>0.2986</td>
<td>CuZn</td>
<td>0.2945</td>
<td>FeTi</td>
<td>0.2976</td>
<td>NiTi</td>
<td>0.2972</td>
</tr>
</tbody>
</table>

Table A1.10. *Representative compounds for Structure 10. Pearson’s tables list 461 intermetallic compounds with this structure type.*
Structure 11
Prototype: ZnS (zinc-blende)
SBS/PS: B3/cF8
SG #216: F43m (Td)
Lattice complex: S @ 4a(0,0,0); Zn @ 4c(1/2,1/2,1/2)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnS</td>
<td>0.5406</td>
<td>AlP</td>
<td>0.5415</td>
<td>BeSe</td>
<td>0.5070</td>
<td>SeZn</td>
<td>0.5667</td>
</tr>
<tr>
<td>TeZn</td>
<td>0.6103</td>
<td>GaP</td>
<td>0.5448</td>
<td>AsGa</td>
<td>0.5653</td>
<td>GaSb</td>
<td>0.6095</td>
</tr>
<tr>
<td>InP</td>
<td>0.5869</td>
<td>CdTe</td>
<td>0.6481</td>
<td>AlAs</td>
<td>0.5662</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A1.11. *Representative compounds for Structure 11. Pearson’s tables list 247 intermetallic compounds with this structure type.*
Structure 12
Prototype: CaF$_2$ (fluorite)
SBS/PS: G1/cF12
SG # 225: Fm$\overline{3}$m (O_h^5)
Lattice complex: Ca @ 4a(0, 0, 0); F @ 8c($\frac{1}{4}, \frac{1}{2}, \frac{1}{4}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaF$_2$</td>
<td>0.5463</td>
<td>F$_2$Sr</td>
<td>0.5800</td>
<td>BaCl$_2$</td>
<td>0.7311</td>
</tr>
<tr>
<td>O$_2$Pb</td>
<td>0.5349</td>
<td>O$_2$U</td>
<td>0.5372</td>
<td>Li$_2$O</td>
<td>0.4611</td>
</tr>
<tr>
<td>Na$_2$Se</td>
<td>0.6823</td>
<td>K$_2$S</td>
<td>0.7406</td>
<td>ORb$_2$</td>
<td>0.6740</td>
</tr>
</tbody>
</table>

Table A1.12. Representative compounds for Structure 12. Pearson’s tables list 137 intermetallic compounds with this structure type.
Structure 13
Prototype: CuFeS$_2$ (chalcopyrite)

*SBS/PS: E1_{116}
SG # 122: 142d (D_{5d}^{12})*

Lattice complex: Cu $@ 4a(0,0,0)$; Fe $@ 4b(0,0,1/2)$; S $@ 8d(x,1/4,1/8)$ with $x = 1/4$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuFeS$_2$</td>
<td>0.524</td>
<td>1.03</td>
<td>Ag$_2$AlTe$_2$</td>
<td>0.6296</td>
<td>1.183</td>
</tr>
<tr>
<td>AlCuSe$_2$</td>
<td>0.5605</td>
<td>1.090</td>
<td>CdGeP$_2$</td>
<td>0.5738</td>
<td>1.0765</td>
</tr>
</tbody>
</table>

Table A1.13. Representative compounds for Structure 13. Pearson’s tables list 132 intermetallic compounds with this structure type.
Structure 14
Prototype: ZnS (wurtzite)

SG # 186: P6₃mc (C₄ᵥ)
Lattice complex: Zn @ 2b(1/3, 2/3, z) with z = 0; S @ 2b(1/3, 2/3, z) with z = 3/8

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>0.335</td>
<td>0.522</td>
<td>ZnS</td>
<td>0.381</td>
<td>0.623</td>
</tr>
<tr>
<td>BP</td>
<td>0.3562</td>
<td>0.590</td>
<td>GaN</td>
<td>0.3190</td>
<td>0.5189</td>
</tr>
</tbody>
</table>

Table A1.14. Representative compounds for Structure 14. Pearson’s tables list 86 intermetallic compounds with this structure type.
**Structure 15
Prototype: NiAs**
*SBS/PS: B8₁/hP4
SG # 194: P6₃/mmc (D₄h₃)*
Lattice complex: Ni @ 2a(0, 0, 0); As @ 2c(\(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>(c)</th>
<th>Compound</th>
<th>(a)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiAs</td>
<td>0.36</td>
<td>0.501</td>
<td>AuSe</td>
<td>0.412</td>
<td>0.539</td>
</tr>
<tr>
<td>NbSb</td>
<td>0.4270</td>
<td>0.5447</td>
<td>CrS</td>
<td>0.3419</td>
<td>0.5550</td>
</tr>
</tbody>
</table>

Table A1.15. Representative compounds for Structure 15. Pearson’s tables list 217 intermetallic compounds with this structure type.
Crystal Structure Descriptions

Structure 16
Prototype: Ni₃Sn

SG # 194: P6₃/mmc (D₄dh)

Lattice complex: Ni @ 2c(½, ½, ½); Sn @ 6h(x, 2x, ½) with x = 5/6

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni₃Sn</td>
<td>0.5275</td>
<td>0.4234</td>
<td>Fe₃Ga</td>
<td>0.520</td>
<td>0.426</td>
</tr>
<tr>
<td>InTi₃</td>
<td>0.589</td>
<td>0.476</td>
<td>Al₃Sm</td>
<td>0.6380</td>
<td>0.4597</td>
</tr>
</tbody>
</table>

Table A1.16. Representative compounds for Structure 16. Pearson’s tables list 106 intermetallic compounds with this structure type.
Structure 17 Prototype: α-La
SBS/PS: A3’hP4 $SG \# 194$: P6$_3$/mmc (D_{6h}^4)
Lattice complex: La @ 2a(0, 0, 0) and 2c($\frac{1}{3}, \frac{2}{3}, \frac{1}{4}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-La</td>
<td>0.377</td>
<td>1.21596</td>
<td>Nd</td>
<td>0.36562</td>
<td>1.18056</td>
</tr>
<tr>
<td>Gd</td>
<td>0.3402</td>
<td>1.1047</td>
<td>Sm</td>
<td>0.3565</td>
<td>1.11456</td>
</tr>
</tbody>
</table>

Table A1.17. Representative compounds for Structure 17. Pearson’s tables list 34 intermetallic compounds with this structure type.
Structure 18
Prototype: β-Sn
SG # 141: $I4_1/amd$ (D_{19}^{19})

Lattice complex: Sn @ 4α(0, 0, 0) with origin (1) offset $(0, \frac{1}{4}, \frac{1}{8})$ from the center of symmetry

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Sn</td>
<td>0.58197</td>
<td>0.31750</td>
<td>Ge</td>
<td>0.49585</td>
<td>0.27463</td>
</tr>
</tbody>
</table>

Table A1.18. Representative compounds for Structure 18. Pearson’s tables list 20 intermetallic compounds with this structure type.
Structure 19

Prototype: In

SBS/PS: A6/tI2

SG # 139: I4/mmm (D_{4h}^{17})

Lattice complex: In @ 2a(0, 0, 0)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>0.4598</td>
<td>0.4947</td>
<td>Pa</td>
<td>0.3925</td>
<td>0.3238</td>
</tr>
</tbody>
</table>

Table A1.19. Representative compounds for Structure 19. Pearson’s tables list 28 intermetallic compounds with this structure type.
Structure 20
Prototype: As
SBS/PS: A7/hR2
SG # 166: R̅3m (D_{3d}^5)
Lattice complex: As @ 6c(0, 0, z) with z = 0.2271.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>0.3760</td>
<td>1.0547</td>
<td>Bi</td>
<td>0.4546</td>
<td>1.1862</td>
</tr>
</tbody>
</table>

Table A1.20. Representative compounds for Structure 20. Pearson’s tables list 21 intermetallic compounds with this structure type.
Structure 21
Prototype: γ-Se
SG # 152: $P\overline{3}121$ (D_{3}^{1})
Lattice complex: Se @ 3a(0.7364, 0, $\frac{1}{3}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se</td>
<td>0.4366</td>
<td>0.4959</td>
</tr>
<tr>
<td>Te</td>
<td>0.4527</td>
<td>0.5921</td>
</tr>
</tbody>
</table>

Table A1.21. *Representative compounds for Structure 21.*
Structure 22
Prototype: C-graphite

SG # 194: P6\textsubscript{3}/mmc (D\textsubscript{6h})

Lattice parameters: \(a = 0.2464, c = 0.6711\)

Lattice complex: C@ 2b(0, 0, \(\frac{1}{4}\)), 2c(\(\frac{1}{3}, \frac{2}{3}, \frac{1}{4}\)).
Structure 23
Prototype: α-Hg
SBS/PS: A10/hR1
Lattice parameters: a = 0.3464, c = 0.6677
Lattice complex: α-Hg @ 1a(0, 0, 0)

SG # 166: R̅3m (D₃d)

![Diagram of α-Hg structure]
Structure 24
Prototype: α-Ga
SBS/PS: A10/oC8
SG # 64: Cmca (\(D_{18}^{2h}\))

Lattice parameters: \(a = 0.4517, b = 0.7645, c = 0.4511\)

Lattice complex: Ga @ 8f\((0, y, z)\) with \(y = 0.1525\) and \(z = 0.079\).
Structure 25
Prototype: α-Mn
SBS/PS: A12/cI58
SG # 217: I43m (T_d^3)

Lattice parameters: $a = 0.8894$

Lattice complex: Mn $\oplus 2a(0,0,0), 8c(x,x,x)$ with $x = 0.317$, $24g(x,x,z)$ with $(x,z)=(0.356,0.42)$ and $(0.089,0.278)$.
Structure 26
Prototype: β-Mn
SBS/PS: A13/cP20
SG # 213: P4132 (O7)
Lattice parameters: $a = 0.6315$
Lattice complex: Mn @ 8$c(x,x,x)$, $x = 0.0636$; and 12$d(\frac{1}{8},y,y+\frac{1}{4})$ with $y = 0.2022$.
Structure 27
Prototype: α-U
SBS/PS: A20/oC4
SG # 63: Cmcm (D\textsubscript{17}h)

Lattice parameters: \(a = 0.2854, b = 0.2854, c = 0.4955\)

Lattice complex: U @ 4c(0, y, \frac{1}{4}) with \(y = 0.1025\)
Structure 28
Prototype: Al_3Ti

SG # 139: $\text{I}4/\text{mmm} (D_{4h}^{17})$

Lattice complex: $\text{Ti} @ 2a(0, 0, 0); \text{Al} @ 2b(0, 0, \frac{1}{2})$ and $4d(0, \frac{1}{2}, \frac{1}{2})$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_3Ti</td>
<td>0.3836</td>
<td>0.8579</td>
<td>Al_3Ta</td>
<td>0.3837</td>
<td>0.8550</td>
</tr>
<tr>
<td>Al_3Hf</td>
<td>0.3928</td>
<td>0.8888</td>
<td>Ga_3Ta</td>
<td>0.3836</td>
<td>0.8579</td>
</tr>
<tr>
<td>Pt_3V</td>
<td>0.3839</td>
<td>0.7796</td>
<td>Pd_3V</td>
<td>0.3850</td>
<td>0.7750</td>
</tr>
</tbody>
</table>

Table A1.22. Representative compounds for Structure 28. Pearson's tables list 44 intermetallic compounds with this structure type.
Structure 29

Prototype: Cr₃Si

SBS/PS: A15/cP8
SG # 223: Pm\̅3n (O₃̅)

Lattice complex: Si @ 2a(0, 0, 0); Cr @ 6c(\(\frac{1}{4}, 0, \frac{1}{2}\))

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\alpha)</th>
<th>Compound</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr₃Si</td>
<td>0.4555</td>
<td>AuZr₃</td>
<td>0.5486</td>
</tr>
<tr>
<td>GeMo₃</td>
<td>0.4932</td>
<td>IrTi₃</td>
<td>0.50087</td>
</tr>
<tr>
<td>CoV₃</td>
<td>0.4676</td>
<td>Mo₃Os</td>
<td>0.49689</td>
</tr>
<tr>
<td>BiNb₃</td>
<td>0.5320</td>
<td>Re₇V₃</td>
<td>0.48783</td>
</tr>
<tr>
<td>Ti₄Ti</td>
<td>0.5256</td>
<td>Nb₃₈Si₂₄V₃₈</td>
<td>0.4915</td>
</tr>
</tbody>
</table>

Table A1.23. Representative compounds for Structure 29. The compounds with stoichiometry deviating from the nominal \(A₃B\) composition typically have defect arrangements (vacancies) accommodating the deviation. Pearson’s tables list 213 intermetallic compounds with this structure type.
Crystal Structure Descriptions

Structure 30 Prototype: Al_3Zr_4

$\text{SBS/PS: } \overline{\text{hP7}}$ $\text{SG } \# 174: \text{P6}(C_{15})$

Lattice complex: Zr @ $1b(0, 0, \frac{1}{2})$, $1f(\frac{2}{3}, \frac{1}{3}, \frac{1}{2})$ and $2h(\frac{1}{3}, \frac{2}{3}, 1)²$; Al @ $3j(\frac{1}{3}, \frac{1}{3}, 0)$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_3Zr_4</td>
<td>0.5433</td>
<td>0.5390</td>
<td>$\text{Al}{40}\text{Nb}{10}\text{Zr}_{50}$</td>
<td>0.5368</td>
<td>0.5333</td>
</tr>
<tr>
<td>Al_3Hf_4</td>
<td>0.5331</td>
<td>0.5414</td>
<td>$\text{Al}{33}\text{Cu}{10}\text{Zr}_{57}$</td>
<td>0.5375</td>
<td>0.5390</td>
</tr>
</tbody>
</table>

Table A1.24. Representative compounds for Structure 30. Pearson’s tables list 4 intermetallic compounds with this structure type.
Structure 31
Prototype: Al₂Zr₃

SBS/PS: —/tP20
SG # 136: P4₂/mnm (D₁₄h)

Lattice complex: Zr @ 4d(0, 1/2, 1/4), 4f(x, x, 0) with x = 0.34 and 4g(x, x, 0) with x = 0.20; Al @ 8f(x, x, z) with x = 1/2 and z = 0.21.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂Zr₃</td>
<td>0.7630</td>
<td>0.6998</td>
<td>Al₂Dy₃</td>
<td>0.8281</td>
<td>0.7550</td>
</tr>
<tr>
<td>Ga₂Gd₃</td>
<td>0.8292</td>
<td>0.7530</td>
<td>Li₂Sr₃</td>
<td>0.9628</td>
<td>0.8550</td>
</tr>
<tr>
<td>Al₂Y₃</td>
<td>0.8239</td>
<td>0.7648</td>
<td>Ce₃Ga₂</td>
<td>0.83</td>
<td>0.764</td>
</tr>
</tbody>
</table>

Table A1.25. Representative compounds for Structure 31. Pearson’s tables list 17 intermetallic compounds with this structure type.
Structure 32 Prototype: Cu$_2$Mg (Laves Phase)

SG # 227: Fd$ar{3}$m (O_h^1)

Lattice complex: Cu @ 16d($\frac{5}{8}$,$\frac{5}{8}$,$\frac{5}{8}$); Mg @ 8a(0,0,0)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$Mg</td>
<td>0.7048</td>
<td>Be$_2$Ta</td>
<td>0.651</td>
<td>CaNi$_2$</td>
<td>0.7239</td>
</tr>
<tr>
<td>DyMn$_2$</td>
<td>0.756</td>
<td>EuPt$_2$</td>
<td>0.7714</td>
<td>Fe$_2$Tb</td>
<td>0.740</td>
</tr>
<tr>
<td>Li$_2$Pt</td>
<td>0.760</td>
<td>Mg$_2$Sn</td>
<td>0.6762</td>
<td>Mg$_2$Si</td>
<td>0.6352</td>
</tr>
</tbody>
</table>

Table A1.26. Representative compounds for Structure 32. Pearson’s tables list 1476 intermetallic compounds (many solid solutions) with this structure type.
Structure 33 Prototype: MgZn$_2$ (Laves Phase)

SBS/PS: C14/hP12 SG # 194: P6$_3$/mmc (D_{6h}^4)

Lattice complex: Mg @ 4f($\frac{1}{3}$, $\frac{2}{3}$, z) with z = 0.0629; Zn @ 2a(0, 0, 0) and 6h(x, 2x, $\frac{1}{4}$) with x = 0.8305

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgZn$_2$</td>
<td>0.5221</td>
<td>0.8567</td>
<td>Al$_2$Hf</td>
<td>0.524</td>
<td>0.868</td>
</tr>
<tr>
<td>BeV$_2$</td>
<td>0.4385</td>
<td>0.7130</td>
<td>Cu$_2$Yb</td>
<td>0.5260</td>
<td>0.8567</td>
</tr>
<tr>
<td>Co$_2$Nb</td>
<td>0.4835</td>
<td>0.7860</td>
<td>Mn$_3$SiW$_2$</td>
<td>0.476</td>
<td>0.775</td>
</tr>
</tbody>
</table>

Table A1.27. Representative compounds for Structure 33. Pearson’s tables list 497 intermetallic compounds (many solid solutions) with this structure type.
Structure 34
Prototype: MgNi₂ (Laves Phase)

[SBS/PS: C36/hP24]
SG # 194: P6₃/mmc (D₄₆h)

Lattice complex: Mg @ 4e(0, 0, z) with z = 0.094; 4f(1/3, 2/3, z) with z = 0.844; Ni @ 4f(1/3, 2/3, z) with z = 0.125; 6g(1/3, 0, 0); 6h(1/6, 1/3, 1/4)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgNi₂</td>
<td>0.4805</td>
<td>1.5770</td>
<td>EuNi₂</td>
<td>0.539</td>
<td>1.749</td>
</tr>
<tr>
<td>HfZn₂</td>
<td>0.519</td>
<td>1.689</td>
<td>Cr₂Ti</td>
<td>0.4932</td>
<td>1.601</td>
</tr>
<tr>
<td>HfMn₂</td>
<td>0.5016</td>
<td>1.637</td>
<td>Cr₂Zr</td>
<td>0.5100</td>
<td>1.661</td>
</tr>
</tbody>
</table>

Table A1.28. *Representative compounds for Structure 34. Pearson’s tables list 40 intermetallic compounds (many solid solutions) with this structure type.*
Structure 35
Prototype: B_2CoW_2

SBS/PS: $\overline{1}a10$

SG $\#71$: $I\text{mmm}$ (D_{2d}^{25})

Lattice complex: Co $\oplus 2a(0,0,0)$; W $\oplus 4f(x,\frac{1}{2},0)$ with $x = 0.205$; B $\oplus 4h(0,y,\frac{1}{2})$ with $y = 0.30$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_2CoW_2</td>
<td>0.7075</td>
<td>0.4561</td>
<td>0.3177</td>
</tr>
<tr>
<td>$AlGd_2Ni_2$</td>
<td>0.8416</td>
<td>0.5408</td>
<td>0.4186</td>
</tr>
<tr>
<td>B_2NiW_2</td>
<td>0.7077</td>
<td>0.4559</td>
<td>0.3186</td>
</tr>
<tr>
<td>Cs_2PtTe_2</td>
<td>1.1387</td>
<td>0.9250</td>
<td>0.3994</td>
</tr>
</tbody>
</table>

Table A1.29. Representative compounds for Structure 35. Pearson’s tables list 27 intermetallic compounds with this structure type.
Structure 36
Prototype: CrFe (σ Phase)
SG # 136: P4_2/mmm (D_4h^4)
Lattice complex: M1 (metal atom 1) @ 2a(0, 0, 0); M2 @ 4f(x, x, 0) with x = 0.3981; M3 @ 8i(x, y, 0) with x = 0.4632 and y = 0.1316; M4 @ 8i(x, y, 0) with x = 0.7376 and y = 0.0653; M5 @ 4j(x, x, z) with x = 0.1823 and z = 0.2524

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrFe</td>
<td>0.87995</td>
<td>0.45442</td>
<td>FeV</td>
<td>0.894</td>
<td>0.462</td>
</tr>
<tr>
<td>FeMo</td>
<td>0.9218</td>
<td>0.4813</td>
<td>Mn_2Mo</td>
<td>0.910</td>
<td>0.474</td>
</tr>
<tr>
<td>PdTa_3</td>
<td>0.9978</td>
<td>0.5208</td>
<td>U</td>
<td>1.07589</td>
<td>0.56531</td>
</tr>
</tbody>
</table>

Table A1.30. Representative compounds for Structure 36. Pearson’s tables list 84 intermetallic compounds with this structure type.
Structure 37
Prototype: \(\text{W}_6\text{Fe}_7 \) (\(\mu \) Phase)

SG# 166: \(\text{R} \bar{3} \text{m} (D_{5d}^5) \)

SBS/PS: D8/hR13

Lattice complex: hexagonal reference frame; Fe @ \(3a(0, 0, 0) \) and \(18h(x, \bar{x}, z) \) with \(x = 0.833 \) and \(z = 0.257 \); W @ \(6c(0, 0, z) \) with \(z = 0.167 \), \(z = 0.346 \), \(z = 0.448 \)

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>(c)</th>
<th>Compound</th>
<th>(a)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{W}_6\text{Fe}_7)</td>
<td>0.4757</td>
<td>2.584</td>
<td>(\text{Co}_7\text{Nb}_6)</td>
<td>0.501</td>
<td>2.650</td>
</tr>
<tr>
<td>(\text{Mn}_5\text{Si}_7)</td>
<td>0.470</td>
<td>2.561</td>
<td>(\text{Ta}_7\text{Zn}_7)</td>
<td>0.5035</td>
<td>2.7528</td>
</tr>
<tr>
<td>(\text{Al}_3\text{Nb}_5\text{Ni}_2)</td>
<td>0.4993</td>
<td>2.7100</td>
<td>(\text{CuNiTa}_2)</td>
<td>0.495</td>
<td>2.700</td>
</tr>
</tbody>
</table>

Table A1.31. Representative compounds for Structure 37. Pearson’s tables list 36 intermetallic compounds with this structure type.
Crystal Structure Descriptions

Structure 38 Prototype: $\text{Al}_3\text{Nb}_{10}\text{Ni}_9$ (M Phase)

$SBS/PS: \quad \text{—/oP52} \quad \text{SG} \# 62: \text{Pnma} \left(D^{16}_{2h}\right)$

$Lattice parameters: \quad a = 0.9393, \quad b = 0.4933, \quad c = 1.6266$ \text{nm}

$Lattice complex: \quad \text{Nb} @ 4c(x, \frac{1}{4}, z) \text{ with } (x, z) \text{ equal to } (0.0593, 0.8506), (0.2996, 0.6016), (0.5242, 0.4590), (0.6164, 0.2932), (0.0144, 0.5518), \text{ and } (0.8388, 0.7062);$

$\text{Al \ and Ni are in solid solution on the following sites: } 4c(x, \frac{1}{4}, z) \text{ with } (x, z) \text{ equal to } (0.0714, 0.3775), (0.3255, 0.3303), \text{ and } (0.8168, 0.4222), \text{ and } 8d(x, y, z) \text{ with } (x, y, z) \text{ equal to } (0.1118, 0.0048, 0.7049) \text{ and } (0.2550, 0.9969, 0.4550)$
Structure 39 Prototype: Cr$_9$Mo$_{21}$Ni$_{20}$ (P Phase)

SBS/PS: —/αP56

SG # 62: Pnma (D_{2h}^{16})

Lattice parameters: $a = 1.6983$, $b = 0.4752$, $c = 0.9070$ nm

Lattice complex: the metal atoms are distributed over the following sites: $4c(x, \frac{1}{4}, z)$ with (x, z) equal to $(0.1134, 0.0737)$, $(0.2547, 0.1363)$, $(0.1578, 0.3257)$, $(0.1819, 0.6058)$, $(0.3253, 0.6650)$, $(0.4536, 0.4746)$, $(0.4047, 0.1988)$, $(0.0780, 0.8152)$, $(0.3650, 0.9383)$, and $(0.0355, 0.5202)$; and $8d(x, y, z)$ with (x, y, z) equal to $(0.5375, 0.9986, 0.2504)$ and $(0.2883, 0.0008, 0.3868)$.
Structure 40
Prototype: Co₅Cr₂Mo₃ (R Phase)

SBS/PS: —/hR53

SG # 148: R3 (C\(^3\))

Lattice parameters: \(a = 1.0903\), \(c = 1.9342\) nm

Lattice complex: the metal atoms are distributed over the following sites: 3b(0, 0, 1/2); 6c(0, 0, z) with z equal to 0.3044 and 0.0735; 18f\((x, y, z)\) with \((x, y, z)\) equal to (0.0509, 0.2790, 0.1000), (0.0212, 0.1393, 0.1962), (0.2250, 0.1969, 0.2685), (0.1759, 0.1265, 0.3969), (0.1132, 0.2687, 0.4652), (0.0330, 0.2579, 0.3183), (0.1596, 0.2470, 0.0020), and (0.2671, 0.2218, 0.1222)
Structure 41
Prototype: Mg$_{32}$(Al,Zn)$_{49}$

SBS/PS: —/c1162
SG # 204: Im$\overline{3}$ (T_d^3)

Lattice complex: Al, Zn @ 2$a(0, 0, 0)$; 24$q(0, y, z)$ with $y = 0.0908$ and $z = 0.1501$; 24$q(0, y, z)$ with $y = 0.1748$ and $z = 0.3007$; 48$h(x, y, z)$ with $y = 0.168$, $z = 0.1836$ and $z = 0.4031$; Mg @ 16$f(x, x, x)$ with $x = 0.1836$; 24$q(0, y, z)$ with $y = 0.2942$ and $z = 0.1194$; 12$e(x, 0, \frac{1}{2})$ with $x = 0.4002$; 12$e(x, 0, \frac{1}{2})$ with $x = 0.1797$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg${32}$(Al,Zn)${49}$</td>
<td>1.416</td>
</tr>
</tbody>
</table>

Table A1.32. *Representative compound for Structure 41.*
Structure 42
Prototype: α-Al-Mn-Si

SBS/PS: —/cP138
SG # 200: Pm3\(\bar{m} \) (\(T_1h \))

Lattice complex:
- Mn @ 12\(j(y, z, 0) \) with \(y = 0.3271, z = 0.2006 \);
- 12\(k(y, z, \frac{1}{2}) \) with \(y = 0.1797, z = 0.3085 \);
- Al, Si @ 6\(e(x, 0, 0) \) with \(x = 0.3638 \);
- 6\(h(x, \frac{1}{2}, \frac{1}{2}) \) with \(x = 0.1216 \);
- 6\(f(x, 0, \frac{1}{2}) \) with \(x = 0.2897 \);
- 12\(j(y, z, 0) \) with \(y = 0.1636 \) and \(z = 0.0997 \);
- 12\(k(y, z, \frac{1}{2}) \) with \(y = 0.3342 \) and \(z = 0.399 \);
- 12\(j(y, z, 0) \) with \(y = 0.3319 \), \(z = 0.4037 \);
- 12\(k(y, z, \frac{1}{2}) \) with \(y = 0.1205 \), \(z = 0.1175 \);
- 24\(l(x, y, z) \) with \(x = 0.1585 \), \(y = 0.1892 \), \(z = 0.298 \);
- 24\(l(x, y, z) \) with \(x = 0.3897 \), \(y = 0.3127 \), \(z = 0.1955 \).

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Al-Mn-Si</td>
<td>1.268</td>
</tr>
</tbody>
</table>

Table A1.33. *Representative compound for Structure 42.*
Structure 43
Prototype: AuBe$_5$

*SBS/PS: C15/cF24
SG # 216: F43m (T$_d^3$)*

Lattice complex: Au @ 3a(0, 0, 0); Be @ 4c($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) and 16e($\frac{7}{16}, \frac{5}{16}, \frac{5}{16}$)

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuBe$_5$</td>
<td>0.6085</td>
<td>Ni$_5$U</td>
<td>0.6780</td>
<td>Cu$_{35}$Gd</td>
<td>0.706</td>
</tr>
<tr>
<td>Cu$_5$Tm</td>
<td>0.6991</td>
<td>AgCu$_4$Gd</td>
<td>0.7163</td>
<td>Ni${66}$Zn${17}$Zr$_{17}$</td>
<td>0.6792</td>
</tr>
</tbody>
</table>

Table A1.34. Representative compounds for Structure 43. Pearson's tables list 97 intermetallic compounds with this structure type.
Structure 44

Prototype: Mn$_{23}$Th$_6$

*SBS/PS: D$_8$g/cF116
SG # 225: Fm$\bar{3}$m (O_6^h)*

Lattice complex: Mn $@$ 4b($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$), 24d($0, \frac{1}{4}, \frac{1}{2}$), 32f($x, x, x$) with $x = 0.378$ and $x = 0.178$; Th $@$ 24e($x, 0, 0$) with $x = 0.203$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$_{23}$Th$_6$</td>
<td>1.2523</td>
<td>Mn$_{23}$Sm$_6$</td>
<td>1.258</td>
<td>Ba6Mg${23}$</td>
<td>1.521</td>
</tr>
<tr>
<td>Fe$_{23}$Tb$_6$</td>
<td>1.2007</td>
<td>Mn6Ni${16}$Si$_7$</td>
<td>1.1063</td>
<td>Fe${10}$Ge${13}$Ti$_6$</td>
<td>1.1704</td>
</tr>
</tbody>
</table>

Table A1.35. Representative compounds for Structure 44. Pearson’s tables list 186 intermetallic compounds with this structure type.
Structure 45
Prototype: NaZn$_{13}$

SG # 226: Fm$\overline{3}c$ (O_h)
Lattice complex: Na @ 8a($\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$); Zn @ 8b(0, 0, 0) and 96i(0, y, z) with y = 0.178, z = 0.122

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaZn$_{13}$</td>
<td>1.22836</td>
<td>Co$_{13}$La</td>
<td>1.133</td>
<td>Be$_{13}$Mg</td>
<td>1.0166</td>
</tr>
<tr>
<td>Cd$_{13}$Cs</td>
<td>1.389</td>
<td>Ni$_7$Si$_6$Sm</td>
<td>1.112</td>
<td>Co$_{11}$Ga$_2$La</td>
<td>1.14694</td>
</tr>
</tbody>
</table>

Table A1.36. Representative compounds for Structure 45. Pearson’s tables list 93 intermetallic compounds with this structure type.
Structure 46 Prototype: Be$_3$Nb
SBS/PS: —/hR12 SG # 166: R3m (D_3^5)
Lattice complex: Be @ $3b(0, 0, \frac{1}{2})$, $6c(0, 0, z)$ with $z = 0.3344$ and $18b(x, \bar{x}, z)$ with $(x = 0.504, z = 0.0818)$; Nb @ $3a(0, 0, 0)$ and $6c(0, 0, z)$ with $z = 0.1402$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be$_3$Nb</td>
<td>0.4561</td>
<td>2.105</td>
<td>Co$_3$Sm</td>
<td>0.50584</td>
<td>2.4618</td>
</tr>
<tr>
<td>Ca$_2$Ni$_3$</td>
<td>0.5030</td>
<td>2.427</td>
<td>DyFe$_3$</td>
<td>0.5125</td>
<td>2.4578</td>
</tr>
<tr>
<td>Co$_2$GaY</td>
<td>0.5132</td>
<td>2.626</td>
<td>Co$_3$H$_2$Pr</td>
<td>0.5091</td>
<td>2.757</td>
</tr>
</tbody>
</table>

Table A1.37. Representative compounds for Structure 46. Pearson’s tables list 112 intermetallic compounds with this structure type.
Structure 47 Prototype: CaCu$_5$

SG # 191: P6/mmm (D_{6h}^1)

Lattice complex: Ca @ 1a(0,0,0); Cu @ 2c($\frac{1}{3},\frac{2}{3},0$) and 3g($\frac{1}{2},0,\frac{1}{2}$).

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCu$_5$</td>
<td>0.5082</td>
<td>0.4078</td>
<td>Co$_5$Sm</td>
<td>0.50002</td>
<td>0.3964</td>
</tr>
<tr>
<td>Au$_5$Ba</td>
<td>0.558690</td>
<td>0.4542</td>
<td>NdPt$_5$</td>
<td>0.5345</td>
<td>0.4391</td>
</tr>
<tr>
<td>AlCu$_4$Er</td>
<td>0.5029</td>
<td>0.4139</td>
<td>GdRh$_3$Si$_2$</td>
<td>0.5505</td>
<td>0.3549</td>
</tr>
</tbody>
</table>

Table A1.38. Representative compounds for Structure 47. Pearson’s tables list 295 intermetallic compounds with this structure type.
Structure 48 Prototype: Ni$_{17}$Th$_2$

SBS/PS: $\overline{\overline{h}}$P38
$SG\ #\ 194$: P6$_3$/mmc (D_{6h}^4)

Lattice complex: Ni @ 1$a(\frac{1}{3}, \frac{2}{3}, z)$ with $z = 0.110$, 6$b(\frac{1}{2}, 0, 0)$, 12$c(x, y, \frac{1}{4})$ with ($x = 0.333$, $y = 0.0$), and 12$d(x, 2x, z)$ with ($x = 0.167, z = 0.0$); Th @ 2$b(0, 0, \frac{1}{4})$ and 2$d(\frac{1}{3}, \frac{2}{3}, \frac{3}{4})$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_{17}$Th$_2$</td>
<td>0.837</td>
<td>0.814</td>
<td>β-Co$_{17}$Sm$_2$</td>
<td>0.8384</td>
<td>0.8159</td>
</tr>
<tr>
<td>Be$_{17}$Ti$_2$</td>
<td>0.735</td>
<td>0.726</td>
<td>Dy2Ni${17}$</td>
<td>0.8299</td>
<td>0.8037</td>
</tr>
<tr>
<td>Dy$_2$Ga5Mn${12}$</td>
<td>0.8687</td>
<td>0.8616</td>
<td>Fe$_{34}$Sm$_3$Y$_3$</td>
<td>0.8502</td>
<td>0.8327</td>
</tr>
</tbody>
</table>

Table A1.39. Representative compounds for Structure 48. Pearson’s tables list 190 intermetallic compounds with this structure type.
Structure 49
Prototype: Th$_2$Zn$_{17}$

SBS/PS: —/hR19
SGB # 166: R3m (D$_{3d}^5$)

Lattice complex: Th \oplus 6c$(0,0,z)$ with $z = 0.333$; Zn \oplus 6c$(0,0,z)$ with $z = 0.097$,
9$d(\frac{1}{2},0,\frac{1}{2}), 18f(x,0,0)$ with $x = 0.333$, and $18h(x,\bar{x},z)$ with $(x = 0.5, z = 0.167)$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th2Zn${17}$</td>
<td>0.903</td>
<td>1.320</td>
<td>α-Co$_{17}$Sm$_2$</td>
<td>0.8420</td>
<td>1.2210</td>
</tr>
<tr>
<td>Ce2Co${17}$</td>
<td>0.8378</td>
<td>1.2206</td>
<td>Ba${24}$Mg${17}$</td>
<td>1.0650</td>
<td>1.5587</td>
</tr>
<tr>
<td>Cu$_{12}$Dy$_2$Ga$_5$</td>
<td>0.8678</td>
<td>1.260</td>
<td>Fe$_{34}$SmTb$_3$</td>
<td>0.8519</td>
<td>1.2409</td>
</tr>
</tbody>
</table>

Table A1.40. *Representative compounds for Structure 49. Pearson’s tables list 223 intermetallic compounds with this structure type.*
Structure 50
Prototype: Mn$_{12}$Th

SG# 139: I4/mmm (D$_{4h}^{17}$)

Lattice complex:
Th @ 2$a(0,0,0)$; Mn @ 8$f(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, 8$i(x, 0, 0)$ with $x = 0.361$,
and 8$j(x, \frac{1}{2}, 0)$ with $x = 0.277$

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$_{12}$Th</td>
<td>0.874</td>
<td>0.495</td>
<td>SmZn$_{12}$</td>
<td>0.8927</td>
<td>0.5215</td>
</tr>
<tr>
<td>Be$_{12}$Pd</td>
<td>0.7271</td>
<td>0.4251</td>
<td>CeMg$_{12}$</td>
<td>1.033</td>
<td>0.596</td>
</tr>
<tr>
<td>Fe$_6$Ga$_4$Yb</td>
<td>0.8648</td>
<td>0.5077</td>
<td>Fe$_5$Ga$_7$Sm</td>
<td>0.8671</td>
<td>0.5090</td>
</tr>
</tbody>
</table>

Table A1.41. *Representative compounds for Structure 50. Pearson’s tables list 338 intermetallic compounds with this structure type.*
Crystal Structure Descriptions

Structure 51 Prototype: BFe$_{14}$Nd$_2$

SG # 136: P4$_2$/mnm (D_{4h}^{14})

Lattice complex: B @ 4f($x,x,0$) with $x = 0.3774$; Fe @ 4c(0, $\frac{1}{2}$, 0), 4e(0, 0, z) with $z = 0.3852$; 8j(x,x,z) with ($x = 0.4021$, $z = 0.2955$) and ($x = 0.1824$, $z = 0.2543$), and 16k(x,y,z) with (x,y,z) equal to (0.4627, 0.1404, 0.3237) and (0.7242, 0.0676, 0.3725); Nd 4f($x,x,0$) with $x = 0.1428$ and 4g($x,\bar{x},0$) with $x = 0.7302$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFe$_{14}$Nd$_2$</td>
<td>0.8804</td>
<td>1.2205</td>
<td>B Dy2Fe${14}$</td>
<td>0.8746</td>
<td>1.1977</td>
</tr>
<tr>
<td>C Ce2Fe${14}$</td>
<td>0.87072</td>
<td>1.18956</td>
<td>C Er2Fe${14}$</td>
<td>0.87213</td>
<td>1.17475</td>
</tr>
</tbody>
</table>

Table A1.42. Representative compounds for Structure 51. Pearson’s tables list 27 intermetallic compounds with this structure type.
Structure 52 Prototype: Fe$_{29}$Nd$_3$

$SG \# 12: \text{C}2/\text{m} (C^{3}_{2h})$

Lattice parameters: $a=1.06382$, $b=0.85892$, $c=0.97456$, $\beta = 96.93^\circ$

Lattice complex: Nd @ 2$a(0,0,0)$ and 4$i(x,0,z)$ with $x = 0.5975$, $z = 0.185$; Fe @ 4$i(x,0,z)$ with (x,z)= (0.1427, 0.2952), (0.2526, 0.5198), (0.8916, 0.2801), (0.707, 0.908); 8$j(x, y, z)$ with (x, y, z)= (0.7981, 0.7806, 0.0904), (0.625, 0.6436, 0.1832), (0.8018, 0.248, 0.3454), and (0.4037, 0.7466, 0.0633); 2$c(\frac{1}{2}, 0, 1)$, 4$e(0, \frac{1}{2}, \frac{1}{2})$, 4$g(0, y, 0)$ with $y = 0.3562$.

\[\text{C}2/\text{m} (C^{3}_{2h}) \]
Structure 53 Prototype: Sm$_2$Fe$_{17}$N$_3$

SBS/PS: —/hR22 SG # 166: R3m (D$_{3d}^5$)

Lattice parameters: a=0.87389, c=1.26528

Lattice complex: Fe @ 6c(0,0,z) with z = 0.0901, 9d($\frac{1}{2}$,0,$\frac{1}{2}$), 18f(x,0,0) with x = 0.2846, and 18h(x,\bar{x},z), with x = 0.5063 and z = 0.1536; N @ 93($\frac{1}{2}$,0,0); Sm @ 6c(0,0,z) with z = 0.3441.
Structure 54 Prototype: Sm(Fe,Ti)$_{12}$N
SBS/PS: $\overline{1}$128 SG # 139: 14/mmm (D_{4h}^{17})

Lattice parameters: $a = 0.85, c = 0.48$

Lattice complex: Fe @ 8$f(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$, 8$i(x, 0, 0)$ with $x = 0.353$, 8$j(x, \frac{1}{2}, 0)$ with $x = 0.293$; N @ 2$b(0, 0, \frac{1}{2})$; Sm @ 2$a(0, 0, 0)$.

Crystal Structure Descriptions
Structure 55
Prototype: Fe$_3$C
SBS/PS: —/aP16
SG # 62: Pnma (D_{2h}^{16})

Lattice complex: Fe @ 2c($x, \frac{1}{2}, z$) with $x = 0.044$ and $z = 0.837$; and 8d(x, y, z) with $x = 0.181, y = 0.063$, and $z = 0.337$; C @ 2c($x, \frac{1}{2}, z$) with $x = 0.881$ and $z = 0.431$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_3$C</td>
<td>0.50787</td>
<td>0.67297</td>
<td>0.45144</td>
</tr>
</tbody>
</table>

Table A1.43. Representative compound for Structure 55.
Structure 56
Prototype: Fe$_2$B

SBS/PS: $-\overline{1}12$
SG # 140: I$4/mcm$ (D_{4h}^{18})

Lattice complex: Fe @ 8$h(x, \frac{1}{2} + x, 0)$ with $x = 0.1661$; and B @ 4$a(0, 0, \frac{1}{4})$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe$_2$B</td>
<td>0.5109</td>
<td>0.4249</td>
</tr>
</tbody>
</table>

Table A1.44. *Representative compound for Structure 56.*
Structure 57 Prototype: Fe$_{23}$Zr$_6$

SBS/PS: —cF116
SG # 225: Fm$ar{3}$m (O_h^5)

Lattice complex: Fe @ 4b($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$); and 24d($0, \frac{1}{2}, \frac{1}{2}$); and 32f($x, x, x$) with $x = 0.378$ and $x = 0.178$; Zr @ 24e($x, 0, 0$) with $x = 0.203$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$_{23}$Zr$_6$</td>
<td>1.2523</td>
</tr>
<tr>
<td>Fe$_{23}$Zr$_6$</td>
<td>1.169</td>
</tr>
</tbody>
</table>

Table A1.45. Representative compounds for Structure 57.
Structure 58 Prototype: Al_2O_3

\[\text{SG} \# 167: \text{R}3\text{c} (D_{3d}^6) \]

\text{Lattice complex: A}1@ 12c(0, 0, z) with $z = 0.3521$; and O@ 18e($x, 0, 1/4$) with $x = 0.3065$;

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al_2O_3</td>
<td>0.47617</td>
<td>1.29947</td>
</tr>
</tbody>
</table>

Table A1.46. \textit{Structural data for corundum: Structure 58.}
Structure 59
Prototype: CaTiO$_3$
SBS/PS: E21/cP5
SG # 221: Pm3m (O_h^3)
Lattice complex: Ti @ 1b($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$); and O @ 3d($\frac{1}{2}, \frac{1}{2}, 0$); and Ca @ 1a(0,0,0).

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaTiO$_3$</td>
<td>0.3795</td>
</tr>
<tr>
<td>MgSiO$_3$</td>
<td>0.348</td>
</tr>
</tbody>
</table>

Table A1.47. Structural data for Structure 59.
Structure 60
Prototype: MgAl$_2$O$_4

SBS/PS: H1/cF56
SG # 227: Fd3m (O_h^6)

Lattice complex:
Mg@ 8a($\frac{1}{8}, \frac{1}{8}, \frac{1}{8}$); and Al@ 16$d$($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$); and O@ 32(e$(x,x,x)$) with $x = 0.262$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>Compound</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgAl$_2$O$_4$</td>
<td>0.808</td>
<td>ZnAl$_2$O$_4$</td>
<td>0.812</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>0.84</td>
<td>(Zn,Mn,Fe)(Fe,Mn)$_2$O$_4$</td>
<td>0.842</td>
</tr>
<tr>
<td>FeCr$_2$O$_4$</td>
<td>0.836</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A1.48. *Structural data for Structure 60.*
Structure 61
Prototype: CdI$_2$
SBS/PS: C6/hP5
SG # 164: P3m1 (D_{3d}^3)

Lattice parameters: $a = 0.4224$, $c = 0.6859$

Lattice complex: Cd @ 1a(0, 0, 0); and I @ 2d($\frac{1}{3}$, $\frac{2}{3}$, z) with $z = 0.2492$.
Structure 62
Prototype: TiO$_2$
SBS/PS: C4/P6
SG #136: P4$_2$/mm (D$_{4h}^{14}$)
Lattice complex: Ti @ 2a(0, 0, 0); and O @ 4f(x, x, 0) with x = 0.3053

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO$_2$</td>
<td>0.4537</td>
<td>0.2958</td>
</tr>
</tbody>
</table>

Table A1.49. Structural data for Structure 62.
Structure 63 Prototype: BaFe$_{12}$O$_{19}$

SG # 194: P6$_3$/mmc (D_{6h})

Lattice complex:
- Ba @ 2d($\frac{1}{3}, \frac{1}{3}, 0$); Fe @ 2a(0, 0, 0); 2b(0, 0, $\frac{1}{3}$); 4f($\frac{1}{3}, \frac{2}{3}, 0$) with $z = 0.0028$; 12k($x, 2x, z$) with $x = 0.167$ and $z = 0.108$; O @ 4c(0, 0, 0) with $z = 0.150$; 4f($\frac{1}{3}, \frac{2}{3}, z$) with $z = -0.05$; 6h($x, 2x, \frac{1}{3}$) with $x = 0.5$; 12k($x, 2x, z$) with (x, z) = (0.167, 0.050) and (0.5, 0.150).

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>BaFe${12}$O${19}$</td>
<td>0.5892</td>
<td>2.3183</td>
</tr>
<tr>
<td>Ba${0.68}$K${0.31}$Ti${0.68}$Fe${5.93}$Mg${0.69}$(Cr,Mn,Ni)${0.34}$O$_{19}$ (Haggertyite)</td>
<td>0.59369</td>
<td>2.32445</td>
</tr>
</tbody>
</table>

Table A1.50. Structural data for Structure 63.
Structure 64
Prototype: PbBi$_2$Nb$_2$O$_9$

SBS/PS: —/αA56

SG # 36: Cmc2$_1$ (C$_{12}^{12}$v)

Lattice complex:
- Pb @ 4a($\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{2}$) with $y = 0.2693$;
- Bi @ 8b(x, y, z) with $y = 0.2662$, $y = 0.742$ and $z = 0.2013$;
- Nb @ 8b(x, y, z) with $x = 0.2776$, $y = 0.7435$ and $z = 0.4115$;
- O @ 4a(x, y, 0) with $x = 0.3092$ and $y = 0.1936$;
- 8b(x, y, z) with $(x, y, z) = (0.3034, y = 0.2751, z = 0.1593)$, $(0.5236, 0.4977, 0.2473)$, $(0.5283, 0.027, 0.5715)$, and $(0.5967, 0.5457, 0.5846)$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbBi$_2$Nb$_2$O$_9$</td>
<td>0.5503</td>
<td>0.5495</td>
<td>2.5531</td>
</tr>
</tbody>
</table>

Table A1.51. *Structural data for Structure 64.*
Structure 65 Prototype: ZnWO$_4$

Prototype: ZnWO$_4$

\begin{align*}
\text{SBS/PS: } & \text{ } -/\text{mP12} & \text{SG } \# 13: & \text{ P2} /c \text{ (C}_{4\text{h}})
\end{align*}

Lattice complex: Zn @ 2f($\frac{1}{2}, y, \frac{1}{2}$) with $y = 0.674$; W @ 2e(0, $y, \frac{1}{2}$) with $y =$ 0.2662; O @ 4g(x, y, z) with (x, y, z) = (0.22, 0.11, 0.95) and (0.26, 0.38, 0.39).

<table>
<thead>
<tr>
<th>Compound</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnWO$_4$</td>
<td>0.472</td>
<td>0.57</td>
<td>0.495</td>
<td>90.15°</td>
</tr>
</tbody>
</table>

Table A1.52. Structural data for Structure 65.
Structure 66
Prototype: Ti$_2$CS

SG# 194: P6$_3$/mmc (D$_{6h}$)

Lattice complex:

\[\text{Ti} @ 4e(0, 0, z) \text{ with } z = 0.1; \text{ C} @ 2a(0, 0, 0); \text{ S} @ 2d(\frac{1}{3}, \frac{2}{3}, \frac{1}{2}). \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>(a)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$_2$CS</td>
<td>0.321</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Table A1.53. *Structural data for Structure 66.*
Structure 67
Prototype: BaPb$_{1-x}$Bi$_x$O$_3$ (0.05 < x < 0.30)

*SBS/PS: —/015
SG # 140: I4/mcm (D$_{4h}^{18}$)*

Lattice parameters: a = 0.605, c = 0.8621

Lattice complex: Pb,Bi @ 4b(0, 1/2, 1/4); Ba @ 4c(0, 0, 0); O @ 4d(0, 1/2, 0) and 8e(1/4, 1/4, 1/4);
Structure 68 Prototype: \(\text{Ba}_{1-x}\text{K}_x\text{BiO}_3 \) (0.37 < \(x \) < 0.5)

\(SBS/PS: \rightarrow cP5 \) \(SG \# 221: \ Pm3m \ (O_h^1) \)

Lattice parameters: \(a = 0.429 \)

\textit{Lattice complex:} \(\text{Bi} @ 1a(0.5, 0.5, 0.5); \text{Ba} @ 1b(0, 0, 0); \text{O} @ 3d(0.5, 0.5, 0); \)
Structure 69
Prototype: La$_2$CuO$_4$

SG # 139: $I4/mmm$ (D_{4h}^{17})

Lattice parameters: $a = 0.3783$, $c = 1.32883$

Lattice complex: La @ $xx(0, 0, z)$ with $z = 0.3606$; Cu @ $xx(0, 0, 0)$; O @ $xx(0, \frac{1}{2}, 0)$ and $xx(0, 0, z)$ with $z = 0.1828$.
Structure 70
Prototype: Nd₂CuO₄
SBS/PS: —/t₁₅
SG # 139: 14/mmm (D¹₇₄h)
Lattice parameters: \(a = 0.395, c = 1.207 \)
Lattice complex: Nd @ \((0, 0, z)\) with \(z = 0.3513 \); Cu @ \((0, 0, 0)\); O @ \((0, \frac{1}{2}, 0)\) and \((0, \frac{1}{2}, \frac{1}{4})\).
Structure 71 Prototype: YBa$_2$Cu$_3$O$_{7-x}$

SBS/PS: —/tI5

SG # 47: Pmmm (D_{2h}^1)

Lattice parameters: $a = 0.38198$, $b = 0.38849$, $c = 1.16762$

Lattice complex: Y @ 1h($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$); Ba @ 2t($\frac{1}{2}$, $\frac{1}{2}$, z) with $z = 0.1843$; Cu @ 1a(0, 0, 0) and 2t($\frac{1}{2}$, $\frac{1}{2}$, z) with $z = 0.3556$; O @ 1e(0, $\frac{1}{2}$, 0), 2s($\frac{1}{2}$, 0, z) with $z = 0.3779$ and 2r(0, $\frac{1}{2}$, z) with $z = 0.379$.
Structure 72
Prototype: Bi$_2$Sr$_2$CuO$_{6+x}$
SBS/PS: —/tI5
SG # 139: I4/mmm (D_{4h}^{17})
Lattice parameters: $a = 0.3886$, $c = 2.4662$

Lattice complex:
Bi @ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.202$;
Sr @ $xx(0, 0, z)$ with $z = 0.083$;
Cu @ $xx(\frac{1}{2}, \frac{1}{2}, 0)$;
O @ $xx(0, \frac{1}{2}, 0)$;
$xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.116$ and $z = 0.288$.

Crystal Structure Descriptions

A1–75
Structure 73 Prototype: Bi₂Sr₂CaCu₂O₈₊ₓ

SBS/PS: —/tI5 SG # 139: I₄/mmm (D₁₇)

Lattice parameters: \(a = 0.3828\), \(c = 3.089\)

Lattice complex:
- Bi @ \(xx(\frac{1}{2}, \frac{1}{2}, z)\) with \(z = 0.2136\);
- Ca @ \(xx(0, 0, 0)\);
- Sr @ \(xx(0, 0, z)\) with \(z = 0.1218\);
- Cu @ \(xx(\frac{1}{2}, \frac{1}{2}, z)\) with \(z = 0.054\);
- O @ \(xx(0, \frac{1}{2}, z)\) with \(z = 0.0531, xx(\frac{1}{2}, \frac{1}{2}, z)\) with \(z = 0.1461, xx(x, \frac{1}{2}, z)\) with \(x = 0.604\) and \(z = 0.2815\).
Structure 74
Prototype: Bi$_2$Sr$_2$Ca$_2$Cu$_3$O$_{10+z}$

SBS/PS: —/tI5
SG # 139: I4/mmm (D_{4h}^{17})

Lattice parameters: $a = 0.38503$, $c = 3.70$

Lattice complex: Bi @ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.22$; Ca @ $xx(0, 0, z)$ with $z = 0.046$; Sr @ $xx(0, 0, z)$ with $z = 0.144$; Cu @ $xx(\frac{1}{2}, \frac{1}{2}, 0)$; $xx(\frac{1}{2}, 0, z)$ with $z = 0.089$; O @ $xx(\frac{1}{2}, 0, 0)$; $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.158$ and $z = 0.2724$; $xx(\frac{1}{2}, 0, z)$ with $z = 0.087$.
Structure 75
Prototype: Bi$_2$Sr$_2$Ca$_3$Cu$_4$O$_{12+z}$
SBS/PS: n15
SG # 139: Imm (D_{4h}^{17})

Lattice parameters: $a = 0.38503$, $c = 4.226$

Lattice complex: Bi @ $xx(\frac{1}{2},\frac{1}{2}, z)$ with $z = 0.224$; Ca @ $xx(0,0,0)$; $xx(0,0,z)$ with $z = 0.076$; Sr @ $xx(0,0,z)$ with $z = 0.138$; Cu @ $xx(\frac{1}{2},\frac{1}{2}, z)$ with $z = 0.038$ and $z = 0.136$; O @ $xx(\frac{1}{2},\frac{1}{2}, z)$ with $z = 0.136$ and $z = 0.268$; $xx(\frac{1}{2},0,z)$ with $z = 0.038$ and $z = 0.114$.
Structure 76 Prototype: Tl\textsubscript{2}Ba\textsubscript{2}CuO\textsubscript{6+z}

SBS/PS: —/\textit{i}15
SG # 139: I4/mmm (D_{4h}^{17})

Lattice parameters: $a = 0.3866$, $c = 2.329$

Lattice complex: Tl @ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.202$; Ba @ $xx(0, 0, z)$ with $z = 0.083$; Cu @ $xx(\frac{1}{2}, \frac{1}{2}, 0)$; O @ $xx(0, \frac{1}{2}, 0); xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.116$ and $z = 0.288$.
Structure 77
Prototype: $\text{Tl}_2\text{Ba}_2\text{CaCu}_2\text{O}_{8+x}$

$SG \# 139$: $\text{I4}/\text{mmm} (D_{4h}^{17})$

Lattice parameters: $a = 0.3855$, $c = 2.9318$

Lattice complex: Tl@ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.2136$; Ca@ $xx(0, 0, 0)$; Ba@ $xx(0, 0, z)$ with $z = 0.1218$; Cu@ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.054$; O@ $xx(0, \frac{1}{2}, z)$ with $z = 0.0531$; $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.1461$; $xx(x, \frac{1}{2}, z)$ with $x = 0.604$ and $z = 0.2815$.
Structure 78 Prototype: Tl$_2$Ba$_2$Ca$_2$Cu$_3$O$_{10+x}$

SBS/PS: —/—/5

SG # 139: I4/mmm (D_{4h}^{17})

Lattice parameters: $a = 0.38503$, $c = 3.588$

Lattice complex: Tl@ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.22$; Ca@ $xx(0, 0, z)$ with $z = 0.046$; Ba@ $xx(0, 0, z)$ with $z = 0.144$; Cu@ $xx(\frac{1}{2}, \frac{1}{2}, 0)$; $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.089$; O@ $xx(\frac{1}{2}, 0, 0)$; $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.158$ and $z = 0.2724$; $xx(\frac{1}{2}, 0, z)$ with $z = 0.087$.
Structure 79 Prototype: Tl₂Ba₂Ca₃Cu₄O₁₂₊ₓ

SBS/PS: —/tI5 SG # 139: I4/mmm (D₁₇₄)

Lattice parameters: a = 0.38503, c = 4.226

Lattice complex: Tl @ xx(1/2, 1/2, z) with z = 0.224; Ca @ xx(0, 0, 0); xx(0, 0, z) with z = 0.076; Ba @ xx(0, 0, z) with z = 0.138; Cu @ xx(1/2, 1/2, z) with z = 0.038 and z = 0.136; O @ xx(1/2, 1/2, z) with z = 0.136 and z = 0.268; xx(1/2, 0, z) with z = 0.0.038 and z = 0.114.
Crystal Structure Descriptions

Structure 80 Prototype: TlBa$_2$CuO$_5$

SBS/PS: —/tI5

SG # 123: P4/mmm (D_{4h}^1)

Lattice parameters: $a = 0.385$, $c = 0.954$

Lattice complex: Tl@ $xx(\frac{1}{2}, \frac{1}{2}, 0)$; Ba@ $xx(0, 0, z)$ with $z = 0.298$; Cu@ $xx(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; O@ $xx(0, 0, 0)$; $xx(0, \frac{1}{2}, \frac{1}{2})$; $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.2078$.
Structure 81 Prototype: TlBa$_2$CaCu$_2$O$_7$

Lattice parameters: $a = 0.38234$, $c = 1.2384$

Lattice complex: Tl@ $xx(0, 0, 0)$; Ba@ $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.2128$; Ca@ $xx(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; Cu@ $xx(0, 0, z)$ with $z = 0.3675$; O@ $xx(\frac{1}{2}, \frac{1}{2}, 0)$; $xx(0, 0, z)$ with $z = 0.164$; $xx(\frac{1}{2}, 0, z)$ with $z = 0.3749$.
Crystal Structure Descriptions

Structure 82
Prototype: TlBa$_2$Ca$_2$Cu$_3$O$_9$

SBS/PS: —/tI5
SG # 123: P4/mmm (D_{4h}^1)

Lattice parameters: $a = 0.38429$, $c = 1.5871$

Lattice complex: Tl at $xx(0, 0, 0)$; Ba at $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.176$; Ca at $xx(\frac{1}{2}, \frac{1}{2}, z)$ with $z = 0.397$; Cu at $xx(0, 0, \frac{1}{2})$; $xx(0, 0, z)$ with $z = 0.302$; O at $xx(\frac{1}{2}, \frac{1}{2}, 0)$; $xx(0, \frac{1}{2}, \frac{1}{2})$; $xx(0, \frac{1}{2}, z)$ with $z = 0.304$; $xx(0, 0, z)$ with $z = 0.132$.
Structure 83
Prototype: TlBa$_2$Ca$_3$Cu$_4$O$_{11}$

SBS/PS: $\overline{4}i15$
SG # 139: $I4/mmm (D^{17}_{4h})$

Lattice parameters: $a = 0.385, c = 1.915$

Lattice complex: Tl@$xx(0,0,0)$; Ba@$xx(\frac{1}{2},\frac{1}{2},z)$ with $z = 0.150$; Ca@$xx(\frac{1}{2},\frac{1}{2},\frac{1}{2})$; $xx(\frac{1}{2},\frac{1}{2},z)$ with $z = 0.3315$; Cu@$xx(0,0,z)$ with $z = 0.248$ and $z = 0.4151$; O@$xx(\frac{1}{2},\frac{1}{2},0); xx(0,0,z)$ with $z = 0.15; xx(\frac{1}{2},0,z)$ with $z = 0.248$ and $z = 0.4151$.
Structure 84 Prototype: AgBa\textsubscript{2}Ca\textsubscript{3}Cu\textsubscript{4}O\textsubscript{10}

$SG \ # \ 83:\ P4/m \ (C_{4h})$

Lattice parameters: $a = 0.386$, $c = 1.81$

Lattice complex: Ag @ $xx(0,0,0)$; Ba @ $xx(1/2,1/2,z)$ with $z = 0.883$; Ca @ $xx(1/2,1/2,1/2)$; $xx(1/2,1/2,z)$ with $z = 0.677$; Cu @ $xx(0,0,0)$; $xx(0,0,z)$ with $z = 0.5884$ and $z = 0.7650$; O @ $xx(1/2,1/2,0)$; $xx(0,1/2,z)$ with $z = 0.5884$ and $z = 0.7650$; $xx(0,0,z)$ with $z = 0.8830$.
Structure 85
Prototype: (Ba,Sr)CuO$_4$

SBS/PS: —/015
SG # 123: P4/mmm (D_{4h}^1)

Lattice parameters: $a = 0.393$, $c = 0.347$

Lattice complex: Ba,Sr @ $xx(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; Cu @ $xx(0,0,0)$; O @ $xx(0,\frac{1}{2},0)$.

Crystal Structure Descriptions

A1–88

Prototype: (Ba,Sr)CuO$_4$

SBS/PS: —/015
SG # 123: P4/mmm (D_{4h}^1)

Lattice parameters: $a = 0.393$, $c = 0.347$

Lattice complex: Ba,Sr @ $xx(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$; Cu @ $xx(0,0,0)$; O @ $xx(0,\frac{1}{2},0)$.

Crystal Structure Descriptions
Structure 86
Prototype: Forsterite: Mg$_2$SiO$_4$

SBS/PS: S1$_2$/oP28
SG # 62: Pnma (D$^{16}_{2h}$)

Lattice parameters: $a = 0.4762$, $b = 1.0225$, $c = 0.462$

Lattice complex:
- Mg @ 4a(0, 0, 0); and 4c(x, y, $\frac{1}{4}$) with $x = 0.9896$ and $y = 0.2776$
- O @ 4c(x, y, $\frac{1}{4}$) with $x = 0.7667$ and $y = 0.0918$; 4c(x, y, $\frac{1}{4}$) with $x = 0.2202$ and $y = 0.4477$; 8d(x, y, z) with $x = 0.2781$, $y = 0.1633$ and $z = 0.0337$
- Si @ 4c(x, y, $\frac{1}{4}$) with $x = 0.4226$ and $y = 0.5994$.
Structure 87 Prototype: Garnet: Ca$_3$Fe$_2$Si$_3$O$_{12}$

$SG # 230: \text{Ia\overline{3}d (O}^{10}_h)$

Lattice parameters: $a = 1.203$

Lattice complex: Ca@ 24c($\frac{1}{8}, 0, \frac{1}{4}$); Fe@ 16a(0, 0, 0); O@ 96h(x, y, z) with $x = 0.0395, y = 0.0488$ and $z = 0.6556$; Si@ 24d($\frac{3}{8}, 0, \frac{1}{4}$).
Structure 88
Prototype: Zircon ZrSiO$_4$

SBS/PS: 1/t124
SG # 141: $I4_1/amd$ (D_{19}^{19})

Lattice parameters: $a = 0.661$, $c = 0.6001$

Lattice complex:
Zr@ 4a(0, $\frac{3}{4}$, $\frac{1}{8}$);
O@ 16h(0, y, z) with $y = 0.0616$ and $z = 0.1967$;
Si@ 4b($\frac{1}{4}$, $\frac{1}{4}$, $\frac{3}{8}$).
Structure 89 Prototype: Kyanite Al_2SiO_5

SBS/PS: —/tP16 SG # 2: $\text{P}\overline{1}$ (C_1^i)

Lattice parameters: $a = 0.71262$, $b = 0.7852$, $c = 0.5724$, $\alpha = 89.99^\circ$, $\beta = 101.11^\circ$, $\gamma = 106.03^\circ$

Lattice complex: $\text{Al} @ 2i(x, y, z)$ with $(x, y, z) = (0.3254, 0.704, 0.4582)$, $(0.2974, 0.6989, 0.9505)$, $(0.0998, 0.3863, 0.6403)$, and $(0.112, 0.9175, 0.1649)$; $\text{O} @ 2i(x, y, z)$ with $(x, y, z) = (0.1095, 0.1468, 0.1288)$, $(0.123, 0.6856, 0.1812)$, $(0.2747, 0.4545, 0.9547)$, $(0.2831, 0.9354, 0.9353)$, $(0.1084, 0.152, 0.6669)$, $(0.1219, 0.6307, 0.6389)$, $(0.2822, 0.4453, 0.4288)$, $(0.2915, 0.9467, 0.4459)$, $(0.5008, 0.2749, 0.244)$ and $(0.5015, 0.2312, 0.7553)$; $\text{Si} @ 2i(x, y, z)$ with $(x, y, z) = (0.2962, 0.0649, 0.7066)$ and $(0.291, 0.3317, 0.1892)$.
Structure 90 Prototype: Sillimanite Al$_2$SiO$_5$

SBS/PS: —/αP32
SG # 62: Pnma (D^{16}_{2d})

Lattice parameters: $a = 0.74883$, $b = 0.76808$, $c = 0.5774$

Lattice complex: Al @ 4a(0, 0, 0); and 4c(x, y, $\frac{1}{2}$) with $x = 0.1417$ and $y = 0.3449$; O @ 4c(x, y, $\frac{3}{4}$) with (x, y) = (0.3605, 0.4094), (0.4763, 0.0015) and (0.3569, 0.4341); 8d(x, y, z) with (x, y, z) = (0.2747, 0.4545, 0.9547), (0.2831, 0.9354, 0.9353) and (0.1252, 0.223, 0.5145); Si @ 4c(x, y, $\frac{3}{4}$) with $x = 0.1533$ and $y = 0.3402$;
Crystal Structure Descriptions

Structure 91
Prototype: Epidote Ca₂(Al,Fe)Al₂Si₃O₁₃H
SBS/PS: —/mP44
SG # 11: P2₁/m (C2h)

Lattice parameters: \(a = 0.8914, b = 0.564, c = 1.0162, \beta = 115.4^\circ \)

Lattice complex:
\(\text{Ca} \)@ 2\(e(x, \frac{1}{2}, z) \) with \((x, z) = (0.2438, 0.849)\) and \((0.3968, 0.579)\);
\(\text{Al} \)@ 2\(a(0, 0, 0) \);
\(\text{Fe} \)@ 2\(e(x, \frac{1}{2}, z) \) with \(x = 0.2946 \) and \(z = 0.2245 \);
\(\text{O} \)@ 4\(f(x, y, z) \) with \((x, y, z) = (0.2339, 0.9923, 0.041), (0.304, 0.9809, 0.3554)\) and \((0.7957, 0.0152, 0.3382)\);
\(\text{Si} \)@ 2\(e(x, \frac{1}{2}, z) \) with \((x, z) = (0.6604, 0.9527), (0.8156, 0.6811)\) and \((0.6851, 0.2744)\).
Structure 92 Prototype: Wollastonite-1T CaSiO$_3$

SBS/PS: —/tC40

SG # 2: $\overline{P}1$ (C_i)

Lattice parameters: $a = 1.0121$, $b = 1.107$, $c = 0.7312$, $\alpha = 99.51^\circ$, $\beta = 100.51^\circ$, $\gamma = 83.43^\circ$

Lattice complex: Ca @ 2i(x, y, z) with $(x, y, z) = (0.0208, 0.7807, 0.0772), (0.0171, 0.7806, 0.5709)$ and $(0.0144, 0.4885, 0.2504)$; O @ 2i(x, y, z) with $(0.1163, 0.5797, 0.0381), (0.1169, 0.5814, 0.5611), (0.1149, 0.3141, 0.7307), (0.1239, 0.8584, 0.8745), (0.123, 0.8577, 0.3669), (0.1152, 0.2864, 0.2267), (0.2211, 0.9963, 0.6785), (0.182, 0.0886, 0.3704)$ and $(0.1872, 0.0907, 0.0121)$; Si @ 2i(x, y, z) with $(x, y, z) = (0.2265, 0.9583, 0.8877), (0.2267, 0.9577, 0.4537)$, and $(0.2264, 0.1707, 0.2263)$.

![Crystal Structure Diagram](image)
Structure 93 Prototype: Jadeite NaAlSi$_2$O$_6$

SBS/PS: —/hP40 SG # 15: C2/c (C$^{6}_2$ih)

Lattice parameters: $a = 0.9418$, $b = 0.8562$, $c = 0.5219$, $\beta = 107.58^\circ$

Lattice complex: Al @ 4e$(0, y, \frac{1}{2})$ with $y = -0.094$; Na @ 4e$(0, y, \frac{1}{2})$ with $y = 0.3009$; O @ 8f(x, y, z) with $(x, y, z) = (0.109, 0.0763, 0.1277)$, $(0.3608, 0.263, 0.2929)$, and $(0.3433, 0.007, 0.0058)$; Si @ 8f(x, y, z) with $x = 0.2906$, $y = 0.0934$ and $z = 0.2277$.
Structure 94 Prototype: Beryl Be₃Al₂Si₆O₁₈
SBS/PS: —/hP40 SG # 192: P6/mmc (D₁₆h)
Lattice complex: a = 0.9212, c = 0.9236 Al @ 4c(2/3, 1/3, 1/2); Be @ 6f(1/2, 0, 1/4); Cs @
2a(0, 0, 1/4); Na @ 2b(0, 0, 0); O @ 12l(x, y, 0) with x = 0.3048 and y = 0.2352; and
24m(x, y, z) with x = 0.4983, y = 0.1473 and z = 0.1445; Si @ 12l(x, y, 0) with
x = 0.3892 and y = 0.1189.
Structure 95
Prototype: Tremolite Ca\(_2\)Mg\(_5\)(Si\(_8\)O\(_{22}\))(OH)\(_3\)

SBS/PS: —/mC78
SG # 12: C2/m (C\(_{2h}\))

Lattice complex: \(a = 0.9863\), \(b = 1.8048\), \(c = 0.5285\), \(\beta = 107.58^\circ\)
Ca \(4h(0, y, \frac{1}{2})\) with \(y = 0.2779\); H \(4i(x, 0, z)\) with \(x = 0.2088\) and \(z = 0.7628\); Mg \(2a(0, 0, 0)\);
Mg \(4h(0, y, \frac{1}{2})\) with \(y = 0.0883\); Na \(2b(0, \frac{1}{2}, 0)\);
O \(8j(x, y, z)\) with \((x, y, z) = (0.1114, 0.0847, 0.2182), (0.1187, 0.1707, 0.725)\);
Si \(8j(x, y, z)\) with \((x, y, z) = (0.338, 0.2921)\)

and \((0.3467, 0.1339, 0.0998)\) and \((0.3437, 0.1181, 0.591)\);
Si \(8j(x, y, z)\) with \((x, y, z) = (0.2799, 0.0842, 0.2974)\) and \((0.2882, 0.1713, 0.8056)\).
Structure 96 Prototype: Kaolinite Al$_2$Si$_2$O$_5$(OH)$_4$

SBS/PS: —/tC26 SG # 1: P1 (C1

Lattice parameters: $a = 0.514, b = 0.893, c = 0.737, \alpha = 91.8^\circ, \beta = 104.5^\circ, \gamma = 90^\circ$

Lattice complex: All atoms in 1a(x, y, z) positions: Al(0.502, 0.172, 0.003) and (0.002, 0.33, 0.002); O(0.754, 0.315, 0.155), (0.69, 0.004, 0.157), (0.791, 0.165, 0.482), (0.612, −0.12, 0.455) and (0.108, −0.058, 0.455); OH(0.778, 0.18, −0.14), (0.278, 0.32, −0.38), (0.316, −0.008, −0.136) and (0.248, 0.184, 0.155); Si(0.8, 0.322, 0.382) and (0.8, 0.0, 0.385).
Structure 97
Prototype: α-Quartz SiO$_2$

$SG#154$: $P3_2121\ (D_6^3)$

Lattice parameters: $a = 0.49137$, $c = 0.54047$

Lattice complex:
- O $6c(x, y, z)$ with $x = 0.4133$, $y = 0.2672$ and $z = 0.1188$
- Si $3a(x, 0, 0)$ with $x = 0.4697$

Origin offset by $(0, 0, -\frac{1}{3})$.

Crystal Structure Descriptions
Structure 98
*Prototype: *β*-Quartz SiO$_2*
SBS/PS: —/hP9
SG #171: P6$_2$ (C1_2^1)

Lattice parameters: $a = 0.49965$, $c = 0.54546$

Lattice complex:
O @ 6c(x, y, z) with $x = 0.4157$, $y = 0.2078$ and $z = 0.1667$;
Si @ 3a$(\frac{1}{2}, 0, 0)$; origin offset by $(0, 0, -\frac{1}{2})$.

Crystal Structure Descriptions
A1–101
Structure 99
Prototype: Na₄Al₃Si₃O₁₂CO

SG # 218: P43n (T₄)

Lattice parameters: a = 0.891

Lattice complex:
Al @ 6e(1/4, 1/2, 0); Cl @ 2a(0, 0, 0); Na @ 8e(x, x, x); with x = 0.175; O @ 24i(x, y, z) with x = 0.15, y = 0.135 and z = 0.44; and Si @ 6c(1/4, 1/2, 0);
Structure 100
Prototype: CaAl₂Si₄O₁₂·6H₂O
SBS/PS: —/hR74
SG # 166: R3m (D₃d)
Lattice parameters: a = 0.937, α = 92.02°
Lattice complex: (dehydrated form) Ca @ 1a(0, 0, 0) with 0.6 site occupancy, 2c(x, x, x) with x = 0.169 and 0.35 site occupancy, 12i(x, y, z) with x = 0.09, y = 0.1609 and z = 0.47 and 0.16 site occupancy; O @ 6f(x, x, 0) with x = 0.284, 6g(x, x, 0.5) with x = 0.124, 6h(x, x, z) with x = 0.238 and z = 0.878, 6c(0, 0, z) with z = 0.255; Al, Si @ 12i(x, y, z) with x = 0.095, y = 0.328 and z = 0.864.
Structure 101
Prototype: Fullerenoid Oxide Sr$_{33}$Bi$_{24+\delta}$Al$_{48}$O$_{141+\frac{24}{3}}$

SBS/PS: —/cF1784
SG # 216: F$\bar{4}$3m (T_d^3)

Lattice parameters: $a = 2.509$

Lattice complex: Bi @ 16e(x, x, x) with $x = 0.85$; 48h(x, x, z) with (x, z) = (0.3, 0.5932) and (0.944475, 0.748866; occ.0.7); Sr @ 4c($\frac{3}{4},\frac{1}{4},\frac{3}{4}$); and 48h($x, x, z$) with ($x, z$) = (0.82763, 0.46345) and (0.17534, 0.99084); 16e(x, x, x) with $x = 0.92946$ and $x = 0.587$; Al @ 48h(x, x, z) with (x, z) = (0.0468, 0.1345), (0.0895, 0.2444), (0.7942, 0.1177) and (0.4545, 0.3661); O @ 16e(x, x, z) with $x = 0.8269$ and $z = 0.1731$; 24f($0, 0, z$) with $z = 0.1121$; 24g($\frac{1}{2},\frac{1}{2}, z$) with $z = 0.1476$; 48h(x, z, z) with $x = 0.0259$ and $y = 0.1083$, 48h(x, x, z) with $x = 0.0772$ and $z = 0.312$; 48h(x, y, z) with (x, y, z) = (0.51, 0.49, 0.345; occ.0.5) and (0.331, 0.372, 0.628; occ.1/3); 48h(x, y, x) with (x, y) = (0.4047, 0.4853) and (0.796, 0.890; occ.0.6); 96i(x, y, z) with (x, y, z) = (0.0421, 0.0585, 0.2042; occ.0.5), (0.1577, 0.0775, 0.2356), (0.9, 0.826, 0.9206; occ.0.5) and (0.273, 0.3597, 0.5388).
Structure 102 Prototype: Ice- I$_h$ H$_2$O

SG# 194: P6$_3$/mmc (D_{6h})

Lattice parameters: $a = 0.45227$, $c = 0.73671$

Lattice complex: H @ 4f($\frac{1}{3}$, $\frac{2}{3}$, z) with $z = 0.173$; 12k(x, 2x, z) with $x = 0.437$ and $z = 0.024$; O @ 4f($\frac{1}{3}$, $\frac{2}{3}$, z) with $z = 0.0618$.
Structure 103 Prototype: Ice-I, \(\text{H}_2\text{O} \)

SBS/PS: \(-/c\overline{F}24\)

\(\text{SG} \ # \ 227: \ Fd\overline{3}m \ (O^7_h)\)

Lattice parameters: \(a = 0.635\)

Lattice complex: \(\text{H} @ 16c(\frac{1}{8}, \frac{1}{8}, \frac{1}{8}); \text{O} @ 8a(0,0,0)\).
Structure 104 Prototype: CO$_2$-Cubic

SBS/PS: $-\text{i}cP12$

SG # 205: Pa\$\text{b} (T_b^6)$

Lattice parameters: $a = 0.5056$

Lattice complex: $\text{O}@ 8c(x, x, x)$ with $x = 0.1324$ and $x = -0.1324$; $\text{C}@ 4a(0, 0, 0)$.
Structure 105
Prototype: C₆H₆
SBS/PS: —/αP48
SG # 61: Pbca (D¹⁺₅²₆)

Lattice parameters: \(a = 0.744, b = 0.955, c = 0.692\)

Lattice complex: All positions \(8\) \(c(x, y, z)\): C@ \((-0.0569, 0.1387, -0.0054), (-0.1335, 0.046, 0.1264)\) and \((-0.0774, -0.0925, 0.1295)\); H@ \((-0.0976, 0.2477, -0.0177), (-0.2409, 0.0794, 0.2218)\) and \((-0.1371, -0.1631, 0.2312)\).
Structure 106
Prototype: Sr$_8$Ga$_{16}$Ge$_{30}$

SBS/PS: —/cP48
SG # 223: Pm\bar{3}n (O$_h^4$)

Lattice complex:
- Sr at $a = 1.0734$: Sr @ $2a(0,0,0); 24k(0,y,z)$ with $y = 0.2387$ and $z = 0.4623$;
- Ga at $6c(\frac{1}{2},0,0); 16i(x,x,x)$ with $x = 0.18459$;
- Ge at $16c(0,0,0); 24k(0,y,z)$ with $y = 0.30939$ and $z = 0.11770$.
